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Abstract

Predicting behavior of" large-scale biochemical metabolic networks represents oite of the

greatest challenges of bioinformatics and computational biology. Approaches, such as flux

balance analysis (FBA), that account for the known stoichiometry of the reaction network

while avoiding implementation of detailed reaction kinetics are perhaps the most promising

tools for the analysis of large complex networks. As a step towards building a complete

theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which

compliments the FBA approach by introducing fundamental constraints based on the first and

second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible

and provide valuable insight into the activation and suppression of biochemical pathways.

Conservation principles impose constraints on the fluxes and chemical potentials associated with

biochemical network reactions that are analogous to Kirchoff's current and voltage laws for

electrical networks (1). Flux balance analysis (2-13) invokes mass conservation, but does not
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consider the chemical potential of non-equilibrium steady state chemical fluxes. The

thermodynamic analysis presented here---energy balance analysis (EBA)--provides additional

constraints on the system that are analogous to the voltage loop law. In addition to predicting

network fluxes that are thermodynamically feasible, EBA_ facilitates a detailed analysis of

regulation of metabolic networks that is not available from FBA alone.

The central flux balance conservation statement is given by the equation:

Sf=O, (1)

where f _ cA"is the vector of n fluxes occurring in the network, S _ CAm"" is the stoichiometric

matrix, and m is the number of reactants in the system. The matrix S stores the stoichiometric

coefficients associated with each flux in the network. In the above formulation both internal

fluxes and boundary fluxes, which transport material into or out of the system, are included in S.

Typically, a number of inequalities are introduced to constrain the boundary fluxes depending

upon the external media (7-10, 12, 13):

a, < f, </5 i . (2)

As implemented by Palsson and colleagues (2, 7-13), biological networks are assumed to

optimize a certain biologically meaningful objective function, which is a linear combination of

the fluxes:

n

Z = Z c, f, = cr f . (3)
i=1

For example, in the analysis of E. coli central metabolism the objective is constructed from the

production of biosynthetic precursors required to generate biomass (8, 10). Another example

uses maximization of ATP production to simulate mitochondrial energy metabolism (11).



Regardlessof the application,optimizationof a linearobjective function (Eq. 3). togetherwith

the equality constraints (Eq. I) and the inequality constraints (Eq. 2). representsa linear

optimizationproblem,whichcanbesolvedwith linearprogramming(14).

The powerof FBA is illustratedby the tour de force assembly of the complete stoichiometry of

the known reactions in E. coli central metabolism provided by Edwards and Palsson (8, I0).

Edwards and Palsson show that the flux balance simulation of the organism-scale metabolic

network predicts the metabolic capabilities of E. coli (8, 10). Under various external constraints

(e.g. aerobic vs. anaerobic growth) FBA can distinguish between genes essential and not

essential for growth in 68 of 79 cases studied (8). This predictive capability of FBA is striking

considering the tremendously complex problems that can be modeled using _tfe or no free

parameters.

Lacking from FBA is the explicit consideration of the energy balance and thermodynamics of the

network reactions. Since biochemical networks are comprised of multiple-species reactions,

energy balance loop equations cannot be obtained from topological loops in the network, as is

done in electrical circuit analysis (1). However, we will show that the energy balance equations

are obtained from an analysis of the network stoichiometry.

If we combine redundant fluxes and remove the columns from S that correspond to boundary

fluxes, the remaining matrix, denoted S', represents the complete set of possible internal

chemical transformations. Using the singular value decomposition (14), S' can be decomposed

as;



S'= AAB r, (4)

where A has the following form:

I! 0o!]h = i i . (5)

2., o ...

The first m columns of A form a diagonal matrix where the diagonal entries are the singular

values 2_. The entries of the remaining columns are all equal to zero. If n c is the number of

columns of S' and r is the rank of S', then columns r + 1 through nc of the matrix B provide the

(n_- r)-dimensional null space of S'. We introduce the matrix K, which stores the null space

vectors of S':

Ls,......

and we denote the i '_ row of K as /_i. Summing the n_ chemical reactions, each scaled by the

corresponding entry of/_i, results in a perfectly balanced reaction equation (with same reactants

in equal proportion on either side of the equation). An example of this analysis for a simple five-

metabolite network with four reactants is illustrated in Fig. 1.

To study network thermodynamics, we consider the vector A,tt that lists the n c chemical potential

differences associated with the reaction fluxes. Since each /c, iarovides weights for exactly

balancing the chemical reaction equations (see Fig. 1), solutions to the equation

g A,tt = 0 (7)
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balancetheglobal freeenergyof thenetwork.Eq. 7 is a statement of conservation of energy, and

hence follov, s from the first lay,' of thermodynamics

takes the form of an inequality constraint for each flux,

f, -A,u, < 0,

15). The second law of thermodynamics

(8)

which ensures that each reaction dissipates energy. Note that the first law imposes an equality

while the second law imposes an inequality, as expected. Eqs. 7 and 8 represent thermodynamic

constraints that should be considered in addition to the flux balance constraints. Eq. 8 provides a

link that couples mass balance and energy balance, and constrains the feasible flux space more

strictly than Eqs. 1 and 2 alone.

We have obtained the stoichiometric matrix provided by Edwards and Palsson (10), used to

represent the flux balances in the E. coli central metabolism. The web-posted supplementary

information (10) provides detailed descriptions of the reaction network, which contains 953

fluxes (735 internal; 218 boundary) acting on 536 metabolites. Using the MATLAB (The

Mathworks Inc., Natick, MA) optimization package we reproduced the linear programming

analysis presented in Ref. 10, and optimized the production of biomass with glucose and oxygen

uptake constrained to be less than or equal to 10 and 15 mmol g-DW l h "l, respectively. The

resulting flux produces a growth rate of 0.81 h 1 on glucose minimal media.

To compute the thermodynamic properties of this large-scale network we first combine

redundant fluxes (e.g., the phosphofructokinase A and B reactions are combined into a single

column of S'), resulting in n. = 617 internal reactions operating on 536 metabolites. The growth

is the optimized under the flux balance constraints (Eqs. 1 and 2) and the constraint that the
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energybalanceequations(Eqs. 7 and 8) aresatisfied.We imposethe additionalconstraintthat

_fl mustbe finite for all nonzerofluxes.The freeenergycango to zeroonly if the flux is zero.

implying that agivenreactionis in chemicalequilibrium.This analysispredictsthesameoptimal

growth rate(0.81 h1 on glucoseminimal media) asthat reportedabovefor FBA. Yet the FBA

prediction does not represent a unique solution to the optimization problem because

redundanciesin the metabolicnetwork allow the optimal growth rate to occur for an infinite

numberof possibleinternal flux distributions.Sincethe EBA-constrainedsolution is (at leastin

this case)abletn achievethesameoptimal growth rateasthat obtainedby consideringonly the

FBA constraints,the fluxes obtainedby EBA representone particularoptimal solution to the

FBA linearprogrammingproblem.However,optimal flux distributionsobtainedby considering

flux balancealonearenot necessarilythermodynamicallyfeasible.The EBA constraintsfurther

restrict the set of feasible fluxes, and provide a more physically realistic flux distribution.

Selectedfluxes from glycolysis,TCA cycle, andrespirationaretabulatedin Fig. 2. Fluxesfrom

thewild typeon glucosemediaunderaerobicandanaerobicconditionsarelabeledWT (oxygen)

andWT (anaerobic),respectively.

EBA further allows quantitativeestimationof the chemicalpotentialsin the system.First, we

introduce the flux resistances, defined as r, =-AM, If,. To avoid the unphysical situation in

which A,u, = 0 for a finite f,, which is equivalent to setting the flux resistance equal to zero, we

assume that there exists a minimum flux resistance, r._, (which is equivalent to saying that there

exists an upper limit to the effective reaction rate constants). Thus the second law constraint is

modified:

A/t, < -r._.f , f, > 0
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_, >-+rm_f_, f_ < 0. (9)

Realistically, each flux may have a different rm_. However for our purposes we find that a single

value, r_ = 400 kcal mol 2 g-DW h, produces reasonable behavior and can be used to describe

the entire network (16). The energy balance constraint can alternatively be written in terms of the

chemical potentials (Eq. 7) or the flux resistances:

[K .. =K.aiag(f).,.=o. (lO)

f,,, ,

With the fluxes fixed using the values obtained from the above analysis, we use quadratic

programming to find an optimal A/z that minimizes the norm of the free energy vector A/z[ 2 . In

addition to the fluxes, Fig. 2 lists the predicted chemical potentials and the conductances,

-I
c/=r, , of each reaction. The choice of r_ = 400 kcal mol "2 g-DW h results in reasonable

predictions of chemical potential. For example, A,tt i = -9.55 kcal mol "1 for ATP hydrolysis.

The reaction conductance provides a measure of the activation level of the pathway. If c_ = 0

then the associated enzyme(s) is not present or is deactivated. Increases in flux or conductance,

at a fixed free energy, indicate that a pathway is up regulated, at either the expression level or the

post-translational level. By changing the boundary constraints, we can study how the metabolic

network responds to changes in substrate. In Fig. 2 we compare the predicted EBA fluxes and

free energies for the WT cell grown under aerobic and anaerobic conditions. We identify a

pathway as "down regulated" (colored blue) if the flux conductance decreases by a factor of 4 or

more, and "up regulated" (colored green) when the conductance increases by more than a factor
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of 4. Basedon this analystswe identify threeenzymesthat requireactivationuponmoving from

aerobic to anaerobic conditions: fumarate reductace, pyruvate formate lysase, and pyridine

nucleotide transhydrogenase. Other pathways sho,_v increases or decreases in flux compared to

aerobic growth. However these differences can be accounted for by changes in the free energy

and thus do not necessarily require regulation.

Following the work of Edwards and Palsson (8, 10) we studied the effects of gene knockouts on

the metabolic capabilities of E. coli. We found that zwf, pgl, and gnd knockouts result in the

same predicted phenotype (Fig. 2), with only two up regulations compared to WT: succinate

dehydrogenase and pyridine nucleotide transhydrogenase. Again, a number of predicted fluxes

that differ from the WT do not require up regulation of the associated enzymes. The situation is

similar for pyk and pgi knockouts. The pyk knockout requires an up regulation of

phosphoenolpyruvate carboxylase to maintain growth of almost 99% that predicted for WT. No

other significant regulations are predicted. The pgi knockout analysis predicts one significant up

regulation and three down regulations and a similar growth rate. Thus, we find that much of the

capacity for metabolic control is built in to the wild type expression and activation levels. Few

regulatory steps are required when nonessential genes are knocked out; the network is robust and

tolerant to errors and deletions (17,18).

However, the situation is different when essential genes are knocked. The eno and pfk genes are

examples of genes that FBA falsely identifies as nonessential to growth on glucose minimal

media (8). The fact that eno and pfk are essential for growth in vivo (19) may be related to the

demands that the knockouts of these genes place on metabolic regulatory mechanisms. These
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demandsaremuchheavierthan thoseimposedby nonessentialknockouts.Our analysispredicts

that maintaininggrowth with theseknockoutsrequiresa greaternumberof pathwayregulations

than for the nonessentialknockouts.Of the 64 reactionslisted in Fig. 2, 15arepredictedto be

upregulatedand 15 downregulatedfor the pfk knockout. Thus, the predicted phenotype is

markedly different from the wild type for nearly half of the reactions associated with glycolysis,

TCA cycle, and respiration, while the pyk and pgi knockouts differ very little from WT.

These predictions are based on one major simplification--that the entire network can be

characterized by a single r,_,, or equivalently a maximum pathway conductance. More

realistically, constraints could be placed on each pathway based on a priori knowledge of the

biochemistry. One promising aspect of EBA is that it is possible to incorporate as much, or as

little, as is known about the individual reactions. For example, if we know that the ratio

[ATP]/[ADP] in the cell is greater than the equilibrium ratio (20), then we know that the free

energy of ATP hydrolysis satisfies the inequality:

A/.lare__,ao e < AlU°Are--,Aoe = --7.3 kcal mol "1. (11)

In general, consider the reaction A _ B. If the ratio [A]I[B] is greater than 1, then the free

energy of that reaction is constrained A,u_ < A u 7. Alternatively, if the concentration ratio is less

A r,than 1, then A,u, > ,u,. If the reactant concentrations are known, then the constraint becomes an

equality: A,u, =-ksTIn(K,q[A]/[B]) , where k a is Boltzmann's constant, T is the absolute

temperature, and K,, 7 is the equilibrium constant of the reaction.
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Together.flux balanceand energybalanceprovide basic laws for the analysisof biochemical

networks.These laws, akin to the basic principles of circuit theory for electrical networks, make

the analysis and design of large-scale biochemical systems practical. The engineering approach

to analysis and design of such complex systems is the identification of modular components that

are separable within the system (21). Flux balance and energy balance circuit theory provides a

basis for understanding how these modules function and interact.
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Figure Legends

Figure 1: Illustration of energy balance equations for a network of five reactions. The first step is

determination of the stoichiometric matrix from the reactions in the network. For this example,

the stoichiometric matrix has rank r = 3, resulting in 2 independent null space vectors. The null

space vectors provide mutually orthogonal solutions to S_ =0. In addition, the null space

vectors are the rows of the matrix K, the energy balance matrix for which K AG = 0.

Figure 2: Regulation of reactions in glycolysis, TCA cycle, and respiration. Predicted

biochemical fluxes (in mmol g-DW t hl), chemical potentials (in kcal moil), and conductances

(in ??) are reported for 64 central metabolic reactions, for wild type (WT) aerobic and anaerobic

growth, and for zwf, pgl, gnd, pyk, pgi, eno, and pfl¢ knockouts. Predicted growth rate for each

case is reported in units of hr -_. Green and blue shading indicate up and down regulation relative

to WT, respectively. Yellow indicates that a reversible flux has changed direction. Gray shading

indicates that the flux cannot be identified as a site of regulation because, although the

conductance has changed moderately (by less than a factor of 10), the magnitudes of the free

energy and the flux have both either increased or decreased.."N.P." denotes enzymes that are not

present under given conditions. "Eq." refers to reactions that are at equilibrium, for which the

conductance cannot be estimated. All simulations are performed for glucose minimal media.
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Reaction Network:

rxn 1: A + 2B _ C

rxn2: C+D_2A+2B

rxn 3: A + B <--->2D

rxn 4: A <--->D

rxn 5: B_--->D

Stoichiometric Matrix:

rxnl rxn2 rxn3 rxn4

A

B

C

D

rxn 5

-1 +2 -1 -1 0

-2 +2 - 1 0 - 1

+1 -1 0 0 0

0 -I +2 +1 +1

Null Space Vectors:

I
/¢l = [0.5630, 0.5630, 0.4148, 0.1483,-0.4!4811

J¢2 = [0.2409, 0.2409,-0.4505, 0.6914, 0.45051[

Stoichiometric Balance Equations:

Kl, I " (rxn 1 ) + Kl, 2" (rxn 2) + KI, 3" (rxn 3) + KI. 4 • (rxn 4) + KI, 5

= 2A +2B+ C+D-->2A +2B+ C+D

• (rxn 5)

K2, 1 • (rxn 1)+K2,e.(rxn2)+K3,3.(rxn3)+K4, 4. (rxn4)+Ks, 5

= 2A + 2B+ C+D---> 2A + 2B+ C+D

• (rxn 5)

Energy Balance Equations: ^ :zx_t:
kll: •

KAnt= . =0
A •

k21 A_t5
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